156 research outputs found

    Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing

    Full text link

    Electromechanics of charge shuttling in dissipative nanostructures

    Full text link
    We investigate the current-voltage (IV) characteristics of a model single-electron transistor where mechanical motion, subject to strong dissipation, of a small metallic grain is possible. The system is studied both by using Monte Carlo simulations and by using an analytical approach. We show that electromechanical coupling results in a highly nonlinear IV-curve. For voltages above the Coulomb blockade threshold, two distinct regimes of charge transfer occur: At low voltages the system behave as a static asymmetric double junction and tunneling is the dominating charge transfer mechanism. At higher voltages an abrupt transition to a new shuttle regime appears, where the grain performs an oscillatory motion back and forth between the leads. In this regime the current is mainly mediated by charges that are carried on the grain as it moves from one lead to the other.Comment: 8 pages, 10 figures, final version to be published in PR

    Impact of van der Waals forces on the classical shuttle instability

    Full text link
    The effects of including the van der Waals interaction in the modelling of the single electron shuttle have been investigated numerically. It is demonstrated that the relative strength of the vdW-forces and the elastic restoring forces determine the characteristics of the shuttle instability. In the case of weak elastic forces and low voltages the grain is trapped close to one lead, and this trapping can be overcome by Coulomb forces by applying a bias voltage VV larger than a threshold voltage VuV_{\rm u}. This allows for grain motion leading to an increase in current by several orders of magnitude above the transition voltage VuV_{\rm u}. Associated with the process is also hysteresis in the I-V characteristics.Comment: minor revisions, updated references, Article published in Phys. Rev. B 69, 035309 (2004

    Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems

    Full text link
    We explore the quantum aspects of an elastic bar supported at both ends and subject to compression. If strain rather than stress is held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain playing the role of temperature. We calculate the quantum fluctuations about the classical value as a function of strain. Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter

    Combining measurements and modeling/simulations analysis to assess carbon nanotube memory cell characteristics

    Get PDF
    A simulation package for CNT memory cells is developed, based on computational modeling of both the mesoscopic structure of carbon nanotube films and the electrical conductivity of inter-CNT contacts. The developed package enables the modeling of various electrical measurements and identification of a range of operation conditions delivering desirable device characteristics. This approach opens the path for optimization of the CNT fabric to meet performance requirements

    Mitigating switching variability in carbon nanotube memristors

    Get PDF
    Root-cause of instability in carbon nanotubes memristors is analyzed employing ultra-short pulse technique in combination with atomic-level material modeling. Separating various factors affecting switching operations allowed to identify structural features and operational conditions leading to improved cell characteristics

    Infrared Spectroscopy of Quantum Crossbars

    Full text link
    Infrared (IR) spectroscopy can be used as an important and effective tool for probing periodic networks of quantum wires or nanotubes (quantum crossbars, QCB) at finite frequencies far from the Luttinger liquid fixed point. Plasmon excitations in QCB may be involved in resonance diffraction of incident electromagnetic waves and in optical absorption in the IR part of the spectrum. Direct absorption of external electric field in QCB strongly depends on the direction of the wave vector q.{\bf q}. This results in two types of 1D2D1D\to 2D dimensional crossover with varying angle of an incident wave or its frequency. In the case of QCB interacting with semiconductor substrate, capacitive contact between them does not destroy the Luttinger liquid character of the long wave QCB excitations. However, the dielectric losses on a substrate surface are significantly changed due to appearance of additional Landau damping. The latter is initiated by diffraction processes on QCB superlattice and manifests itself as strong but narrow absorption peaks lying below the damping region of an isolated substrate.SubmiComment: Submitted to Phys. Rev.

    Bandgap Change of Carbon Nanotubes: Effect of Small Tensile and Torsional Strain

    Full text link
    We use a simple picture based on the π\pi electron approximation to study the bandgap variation of carbon nanotubes with uniaxial and torsional strain. We find (i) that the magnitude of slope of bandgap versus strain has an almost universal behaviour that depends on the chiral angle, (ii) that the sign of slope depends on the value of (nm)mod3(n-m) \bmod 3 and (iii) a novel change in sign of the slope of bandgap versus uniaxial strain arising from a change in the value of the quantum number corresponding to the minimum bandgap. Four orbital calculations are also presented to show that the π\pi orbital results are valid.Comment: Revised. Method explained in detai

    Carbon Nanotubes as Nanoelectromechanical Systems

    Full text link
    We theoretically study the interplay between electrical and mechanical properties of suspended, doubly clamped carbon nanotubes in which charging effects dominate. In this geometry, the capacitance between the nanotube and the gate(s) depends on the distance between them. This dependence modifies the usual Coulomb models and we show that it needs to be incorporated to capture the physics of the problem correctly. We find that the tube position changes in discrete steps every time an electron tunnels onto it. Edges of Coulomb diamonds acquire a (small) curvature. We also show that bistability in the tube position occurs and that tunneling of an electron onto the tube drastically modifies the quantized eigenmodes of the tube. Experimental verification of these predictions is possible in suspended tubes of sub-micron length.Comment: 8 pages, 5 eps figures included. Major changes; new material adde

    Giant magnetoresistance of multiwall carbon nanotubes: modeling the tube/ferromagnetic-electrode burying contact

    Full text link
    We report on the giant magnetoresistance (GMR) of multiwall carbon nanotubes with ultra small diameters. In particular, we consider the effect of the inter-wall interactions and the lead/nanotube coupling. Comparative studies have been performed to show that in the case when all walls are well coupled to the electrodes, the so-called inverse GMR can appear. The tendency towards a negative GMR depends on the inter-wall interaction and on the nanotube le ngth. If, however, the inner nanotubes are out of contact with one of the electrodes, the GMR remains positive even for relatively strong inter-wall interactions regardless of the outer nanotube length. These results shed additional light on recently reported experimental data, where an inverse GMR was found in some multiwall carbon nanotube samples.Comment: 5 pages, 5 figure
    corecore